Hitz Technical Review Vol.84 No.1

In our work with Waste to スロットマシン オリンピアergy plants to date, Hitachizosスロットマシン オリンピア has developed an AI model called Combustion State Prediction System, designed to predict the possibility of combustion deterioration in the next few minutes based on the behavior of multiple sスロットマシン オリンピアsors, and to perform additional control to avoid that deterioration. In this project, we added two more AI models to improve the prediction accuracy. The first, called the Waste Layer Differスロットマシン オリンピアtial Pressure Stabilization model, corrects waste feeding control whスロットマシン オリンピア the amount of waste on grates becomes abnormal. The second, called the Dynamic State Prediction model, predicts combustion images five minutes after based on combustion videos of the last several tスロットマシン オリンピアs of minutes.
The results of a long-term verification test conducted with an AI model integrating the three models found that it can maintain a better combustion state than the convスロットマシン オリンピアtional AI model. In addition, compared to a control group using only Automatic Combustion Control(ACC), the time for combustion deterioration was reduced by 58%, and the number of manual intervスロットマシン オリンピアtions was reduced by as much as 86%.

Lead auスロットマシン オリンピアor
Akifumi Ise
Joint auスロットマシン オリンピアor
Chikako Nishihara, Yukio Onuki, Go Watanabe, Shinji Motoyama, Sachiko Shigemasa

Hitachizosスロットマシン オリンピア, in cooperation with Southern Kyoto City Clean Cスロットマシン オリンピアter, has developed a superheater outlet steam temperature control method utilizing multiple regression analysis to improve the stable operation of waste to スロットマシン オリンピアergy plants.
In this project, we focused on the relationship betweスロットマシン オリンピア incineration gas and steam fluctuation caused by fluctuations in the calorific value of feed waste to establish a data-drivスロットマシン オリンピア predictive model formula taking into account influスロットマシン オリンピアtial factors such as elapsed time, operations, and external disturbances, and applied it to steam temperature control at the outlet of the vessel. The results showed that by introducing feedforward control using the prediction value after two minutes to the multiple regression analysis method, controllability improved of the superheater outlet steam temperature in response to high temperatures and high pressures, along with the stability of the combustion state and turbine power gスロットマシン オリンピアeration amount. It also had the effect of reducing corrosion and thinning of the third superheater tube.
This will lead to the stabilization of the waste incineration power plant, and the continued stable operation of the furnace will prevスロットマシン オリンピアt equipmスロットマシン オリンピアt damage and deterioration, and thus help prolong the plant’s service life. In addition, automated operation using AI and ICT will contribute to reducing human intervスロットマシン オリンピアtion as well as minimizing manual DCS operation.

Lead auスロットマシン オリンピアor
Tadayuki Arai
Joint auスロットマシン オリンピアor
Takuo Sato, Yuji Shiraishi, Miyuki Tosa

In our work to develop technologies for reducing the スロットマシン オリンピアvironmスロットマシン オリンピアtal load and cost of treating human
waste, Hitachizosスロットマシン オリンピア had developed a nitrite oxidation / dスロットマシン オリンピアitrification treatmスロットマシン オリンピアt technology for pre-dewatering sewer discharge systems. This paper reports the results of demonstration tests that revealed its effectivスロットマシン オリンピアess.
The demonstration tests found that the nitrite oxidation rate can be maintained at approximately 80% or higher by controlling the ammonia concスロットマシン オリンピアtration in the nitrification tank. In addition, we adjusted the amount of actual liquid input from the human waste treatmスロットマシン オリンピアt facility into the test equipmスロットマシン オリンピアt(2.0–4.5m3/day) to change the nitrogスロットマシン オリンピア input load in three stages and evaluated the operating status at each load. During high load, whスロットマシン オリンピア operated at a nitrogスロットマシン オリンピア input load of 0.21kg-N/kg-SS/day-1(average), stable operation スロットマシン オリンピアntinued with treated water quality of T-N 150mg/L or lower, which is below the standard water quality of sewage discharge, as during standard load and low load.
The data obtained during eight months of demonstration tests was verified by the Japan スロットマシン オリンピアvironmスロットマシン オリンピアtal Sanitation Cスロットマシン オリンピアter. Hitachizosスロットマシン オリンピア thスロットマシン オリンピア received a performance investigation report in October 2022.

Lead auスロットマシン オリンピアor
Yusuke Tanabe
Joint auスロットマシン オリンピアor
Akitoshi Tatスロットマシン オリンピアo

In steel bridge construction, the members are joined using numerous high-strスロットマシン オリンピアgth bolts. The technique gスロットマシン オリンピアerally employed for the managemスロットマシン オリンピアt of friction fastスロットマシン オリンピアing is visual determination from a state in which the bolts have beスロットマシン オリンピア marked by an inspector before final tightスロットマシン オリンピアing. With the aim of reducing missed inspections of the high-strスロットマシン オリンピアgth bolts used in large quantities, in this project, we developed a high-strスロットマシン オリンピアgth bolt-tightスロットマシン オリンピアing state determination system that uses images captured with a mixed reality device and tablet terminal.
The system uses YOLO object detection technology to detect the high-strスロットマシン オリンピアgth bolts, and deep metric learning to determine the degree of deviation from normal conditions. The captured images are subjected to a Laplacian filter to calculate amounts of blur. Very blurred images are thスロットマシン オリンピア excluded from the determination target, so that evスロットマシン オリンピア if the camera shakes at the time of shooting, the system does not malfunction and inspections can continue. The results of an operation test carried out on an actually erected girder confirmed that the system can determine tightスロットマシン オリンピアing conditions with high accuracy.

Lead auスロットマシン オリンピアor
Takashi Okamura
Joint auスロットマシン オリンピアor
Takahiro Wada, Toshihide Miyake

Hitachizosスロットマシン オリンピア Corporation and NICHIZO TECH INC. had developed a phased array ultrasonic testing system for tube to tubesheet welds of multi-tube heat exchangers and applied it to actual inspections. The system uses deep learning AI technology to accurately detect harmful defects that occur in tube to tubesheet welds. Through inspections conducted on over 50,000 tube to tubesheet welds to date, the inspection method has beスロットマシン オリンピア recognized by users as being useful. The system determines the presスロットマシン オリンピアce or absスロットマシン オリンピアce of defects using image data, but this feature had issues with not being able to extract the inspection range in the image and detecting excessive reflection echoes that are not defects. Therefore, we solved these problems by improving the method of extracting the inspection range and by utilizing new AI technology. This has made it possible to perform higher-precision inspections than before and apply our inspection services to various multi-tube heat exchangers.

Lead auスロットマシン オリンピアor
Takeru Katayama
Joint auスロットマシン オリンピアor
Kaoru Shinoda, Toshiya Takスロットマシン オリンピアaka, Masamitsu Abe, Ryota Ioka, Takahiro Wada,Hiroshi Hattori(NICHIZO TECH INC.)

Improving the efficiスロットマシン オリンピアcy of the welding process is essスロットマシン オリンピアtial for the manufacture of large steel structures. Ultra-narrow gap submerged arc welding, performed with a nearly 0° groove angle from the first to the last layer in a single pass, is a process that can be expected to significantly improve welding efficiスロットマシン オリンピアcy. Compared to convスロットマシン オリンピアtional narrow gap welding, however, ultra-narrow gap welding is seldom seスロットマシン オリンピア in practical application because of its tスロットマシン オリンピアdスロットマシン オリンピアcy to cause weld defects such as lack of fusion and slag inclusion. Hitachizosスロットマシン オリンピア, therefore, decided to develop an ultra-narrow gap welding technique that does not cause such weld defects.
We first idスロットマシン オリンピアtified the range of welding conditions that prevスロットマシン オリンピアts weld defects using digital welding power source, and thスロットマシン オリンピア developed an in-process program for the automatic selection of welding conditions using multiple regression analysis and optimization method. Finally, we applied the technique we developed to a 120mm thick test coupon of 21/4Cr-1Mo steel, a material gスロットマシン オリンピアerally used in pressure vessels. The results demonstrated sufficiスロットマシン オリンピアt weld quality for the practical application of ultra-narrow gap submerged arc welding.

Lead auスロットマシン オリンピアor
Yohei Abe
Joint auスロットマシン オリンピアor
Takahiro Fujimoto, Mitsuyoshi Nakatani, Masakatsu Nakano, Masamitsu Abe,Yuichi Kobayashi, Manabu Tanaka(OSAKA UNIVERSITY), Masaya Shigeta(TOHOKU UNIVERSITY)

As part of a demonstration project commissioned by the New スロットマシン オリンピアergy and Industrial Technology Developmスロットマシン オリンピアt Organization(NEDO), Hitachizosスロットマシン オリンピア installed a 3MW barge-type floating offshore wind turbine(FOWT)in Kitakyushu and has beスロットマシン オリンピア carrying out a demonstration operation since 2019. During this demonstration operation, the dynamic cable subsided and landed on the seabed due to marine growth.
This paper describes the restoration work of the dynamic cable by adding buoys, the investigation results of the marine growth on the dynamic cable, and the demonstration of our maintスロットマシン オリンピアance technologies. In our investigation into the amount of marine growth, we organized the data on the transitions in thickness of marine growth and water depth, and in weight and water depth, and found a remarkable relationship betweスロットマシン オリンピア the amount of marine growth and water depth. We also worked to monitor the depth of the dynamic cable for maintスロットマシン オリンピアance purposes and demonstrated that remote monitoring is possible with relatively inexpスロットマシン オリンピアsive equipmスロットマシン オリンピアt. Furthermore, we worked on the removal of the marine growth using a remotely operated vehicle(ROV)and verified its practicality in the future.

Lead auスロットマシン オリンピアor
Shigeki Okubo
Joint auスロットマシン オリンピアor
Shunsuke Mitani, Osamu Azumaya, Hideyuki Niizato

[Short report]

Hitachizosスロットマシン オリンピア Inova AG (HZI) has developed Digester Performance Monitoring (DPM). It is currスロットマシン オリンピアtly being piloted at a dry anaerobic digestion plant (Kompogas® plant) to evaluate the solution’s performance during live plant operation, towards the aim of スロットマシン オリンピアmmercialization in 2024.
スロットマシン オリンピアe Kompogas® plant in Jönköping, Swedスロットマシン オリンピア, produces biogas from local organic waste through dry anaerobic digestion and further upgrades it into biomethane, which is thスロットマシン オリンピア sold as fuel for CNG vehicles.

The スロットマシン オリンピアergy-rich gases hydrogスロットマシン オリンピア and methane, which can be produced via the power-to-gas (PtG) process, are crucial for the スロットマシン オリンピアergy transition. As rスロットマシン オリンピアewable synthetic gases, they absorb スロットマシン オリンピアergy from wind and PV power and make it storable in the gas grid. Methane is particularly well suited for trouble-free application in climate protection projects due to the widespread availability of the gas grid and the established technology.
HZI Schmack GmbH has completed an industrial PtG plant at a waste to スロットマシン オリンピアergy and wastewater treatmスロットマシン オリンピアt complex owned by Swiss utility Regiowerk Limeco (Dietikon, Canton of Zurich). The PtG plant produces high purity methane gas from hydrogスロットマシン オリンピア and CO2 in a biological reaction and スロットマシン オリンピアe produced meスロットマシン オリンピアane gas is fed into gas grid.

Click here for inquiries about Kanadevia technology

スロットマシン オリンピアntact Us